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Related Rates Notes Date: B Per:

Recall:

d dy . : )
= [y] = ZL since the variables are different
dx dx

Similarly:
d dy dx . . , .
T [y] = — and P [x] = = Since the variables don’t match we need to use the chain
rule. The “t” refers to time, so how does y change with respect to time, how does x
change with respect to time?

Example 1: Finding Related Rates
a. Suppose x and y are both differentiable functions of t and are RELATED by the equation

'y:: x2 4+ 3{. Finhen@ given thahen‘x =1 !
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Given rates and/or values: % = 2X %EL
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b. Suppose x and y are both differentiable functions of t and are RELATED by the equation

Fin o% hen@given thathen@
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6. 'Interpret the solution. Translate your mathematlcal result into the prob
. decide whether the reSult makes sense. .

Verbal Statement Mathematical Model
A spherical balloon is inflated with gas at the rate O\\I _ S00 em
of 500 £ubic cf per ginute) 7 ak /m'V)

All edges of a cube are expanding at a rate of 3 @ e d

per sécond,) G avl' D Cmigec
At a sand and gravel plant, sand is fallmg onto a -0 {4 3
conical pile at a rate of 10 cUBIc feat per rﬂ‘f/O ot M z /min

A crankshaft rotates counterclockwise at a
adg - J
a~Alt 22 - 200 v/,

constant rate of Zoo@aﬂmn_ute.

A player running from 2" to 3 base at a speed of o\ _
(28 ft per second is 30ft f i se. FE 29 H/S“C ~x=30 £t
oM FIASYYS

. i dm . ;
e Changing at a “constant rate” means d—: is the same no matter what the value of m is.

e Changing at a “variable rate” means ‘Z—: depends on the value of m.

Example 2: A hot air balloon rising straight up from a level field is tracked by a range ﬁnde

the balloon from the lift off point. At the moment the range finder’s elevation angle i %, the angle is

increasing at the rate of|. 14 radians per minute|How(fast is the balloon rising at that moment?
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Example 3: A police cruiser, approaching a right angled intersection from the north, is chasing a
speeding car that has turned the corner and is now moving straight east. When the cruiser is|0.6 miles
\—\___ ——————————

X
north of the intersection and the car isto the east. The police determines with radar that the
distance between them is increasing at[20 mph} If the cruiser is moving a% 60 mph!at the instant of

measurement,/vhat is the speed of the car.f) Y de ’d'i_ %V\t\ clogan—
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Example 4: Water runs into a conical tank at the rate oThe tank stands point down and has
' .

0 a height o and a base radius olﬁ ow fast is the water level rising when the water is|6 ft|deep?
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Example 5: Find the@e of change of the distance between the@nd MM the graph

of y 2@ = 2 cm per sec. (AnA (©, o)) (Xa‘ﬂ >
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Example 6: A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The

ak

ﬁ _\jradius of the outer ripple is increasing at a rate odehen the radius is@at what @te is the
total area 501c the disturbed wate’rL changing? \)_a-g- Sy
;¥ A= ol e Sodel
v Y oo

O aNL Ot W

At 9oy ok The ¥ s Qs e vtk
ok Qe ofy ‘

W e v adiVS

ﬁ:Zﬂ(‘ﬂ(q \S Oy ™A 2.
N g:r—%ﬁ ts Yt 1o 8“’@&/%,0.
FJ{:-
ANgh

A
Example 7: The formula for vglume of a cone i Find the/fate of change of the vo@if the

radius is changing at a rate of|2 inches per minute|and the@ght is three times the radiué when (a)

radiusis@and (b) the radiusis NE 2
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Example 8: A construction worker pulls a|5 m plank up the side of a building by means of a rope tied to

one end of the plank. Assume the opposite end of the plank follows a path perpendicular to the wall of

the building and theﬂorker pulls the rope @at arate oil .15 meters per second.‘How(fast is the end of
the plank sliding along the groundywhen the base of the ladder ifrom the wall? > ﬁ’x-
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