\mathcal{D}	2
Name:)
Date:	Per:

In AB we discuss straight line motion (BC is 2 dimensional) so either horizontally or vertically. As an object moves, its position is a function of time. For its position function, we will denote the variable s(t), sometimes if the motion is vertical we will use y(t) or horizontal we will use x(t).

Example 1: On the graph below plot the position function $s(t)=t^2-2t-3$ for the values of time

$$t = 0, 1, 2, 3, 4$$
. $S(0) = -3$ $S(1) = -4$ $S(2) = -3$ $S(3) = 0$ $S(4) = 5$

When an object moves, its **position changes over time.** So we can say that the velocity function v(t) is the change in position over time. This is a DERIVATIVE.

$$v(t) = s'(t)$$

v(t) = s

We define v in the f	ollowing way:		
Motion	v(t) > 0	v(t) < 0	v(t) = 0
Horizontal Line	moving right	moving	not (atrest) moving
Vertical Line	moving	mound	moring

 $\frac{\Delta d}{\Delta t} = 0$

speed = |v(t)| – velocity without direction.

The definition of acceleration is the change in velocity over time, again a DERIVATIVE.

$$a(t)=v^{\prime}(t)=s^{\prime\prime}(t)$$

So, given the position function, s(t), we can now determine both the velocity and the acceleration function.

Motion	a(t) > 0	a(t) < 0	a(t) = 0
Horizontal Line	accelerating to the right	accelerating to	velocity is constant
Vertical Line	acellorating \$	accelerating	velocity is constant

 $\frac{\Delta V}{\Delta t} = 0$

Think about acceleration as a "push" in a particular direction.

Example 2: Given that a particle is moving along a horizontal line with position function $s(t) = t^2 - 4t + 2$. Find the velocity function and acceleration function for the first 5 seconds, show where the object is on the number line and describe the particles motion.

$$S(t) = t^2 - 4t + 2$$

 $v(t) = 2t - 4$
 $a(t) = 2$

								-
t	s(t)	v(t)	v(t)	a(t)	Description of parti	cle's motion Moving	1L/R Speedup	Slowe
0	2	-4	4	2	movingL	Slowing		
1	-1	-2	2	2.	N 11	"	$H \to -$	
2	-2	0	0	2	Stopped	about to mu	ive right	
3	-1	2	2	2	moving R	Speedma	900	
4	2	4.	4	2	W //	//	U	
5	7	(0	O	2	w //	11	- 11	

We are generally interesting when the particle is stopped v(t)=s'(t)=0 or when it has no acceleration a(t)=v'(t)=s''(t)=0. We are also interested when the object is speeding up or slowing down. Let's look at the chart to determine the motion possibilities.

	a(t) > 0	a(t) < 0	a(t) = 0
v(t) > 0	Speeding UP (V+a working tog	Speed is decreasing www (V+a working again	moving right at a Constant velocit
v(t) < 0	Slowing down	Speeding up	moving L at a constant velocity
v(t) = 0	about to move	about to move	not moving

- a. When is the particle stopped (v(t)=0)? S'(t)=V(t)=2t-4
 - b. When is the particle moving left (v(t) < 0) and right (v(t) > 0)? Make a sign chart.
- S''(+) = V'(t) = a(t) = 2
 - d. When is the particle accelerating left (a(t) < 0) and right (a(t) > 0)? Make a sign chart.
 - e. Use the chart above to describe the motion and find the position at critical times.

Example 4: A particle is moving along a horizontal line with position function $s(t) = t^3 - 9t^2 + 24t - 4$. Do an analysis of the particles direction, acceleration, motion (speeding up/slowing down) and position.

 $S'(t) = V(t) = 3t^2 - 18t + 24$ O = 3(t - 2)(t - 4) t = 2,4 O = (0(t - 3)) O = (0(t - 3))

1. a, c, d

A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + (t^2 + 3t)^{6/5} - t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.

- (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2. 1C+)16
- (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the 1(x) = Ochangrosign position of the particle at time t = 5.
- (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
- (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.

a)
$$|v(t)| = 2$$
 or $\left|-2 + (t^2 + 3t) - t^3\right| = 2$

E on AP test you have to Show wnod you put into the calc

< 5 digits past you are WORK ING

truncated t = 3.127, 3.47313.128

← 3 digits past decimal for final answer

C)

v (+) (uft right uft)

Scratenwork NOT Justification

t=0.53603, 3.31776 t=0.536, 3.318

V(+)=0

septi) the particle changes direction at t=0.536 Since V(+) <0 on OLt <.534 and V(+)>0 on .536 <+ <3.318

and t=3.318 ...

of 2) changes direction at t= .536 + 3.317 Since the velocity changes Sign at those valves

Good 3) changes at t= .536 since velocity gos from neg to positive at t= 3.317 ...

In calc V(4) 40 f1(4) f2(x) := d (f1(x)) V'(4) = a(4) LD the speed of the particle is increasing at t=4 Since a fand v one · both negative . have the same sign going he same direction nancto show K= 3.127, 3.473 851.88 Subnear

2. a, c non calc

For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = \cos\left(\frac{\pi}{6}t\right)$. The particle is at position x = -2 at time t = 0.

- (a) For $0 \le t \le 12$, when is the particle moving to the left? $\lor (+) \lor 0$
- (b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time t = 0 to time t = 6.

(c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t = 4? Explain your reasoning.

(d) Find the position of the particle at time t = 4.

(a) V(t) = 0 $Cos \theta = 0$ $Os \theta = 0$ Os

t=3 t=9

right Wt right

The particle is morning

tota left · (3,9) · 3<t <9

· from t=3 +ot=9

C) a(+)=V'(+) =-sin(些)·亚

a(+)====== Sin(==t)

a(4) = (-#) Sin(3)

- . +

of the particle is income ause V+a are going

direction

3.a Calc

For $0 \le t \le 6$, a particle is moving along the x-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $y(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by

The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by

 $a(t) = \frac{1}{2}e^{t/4}\cos\left(e^{t/4}\right)$ and x(0) = 2.

- (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.
- (b) Find the average velocity of the particle for the time period $0 \le t \le 6$.
- (c) Find the total distance traveled by the particle from time t = 0 to t = 6.
- (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.

V(5.5) <0 </p>
V'(5.5) <0 </p>
The speed of the particle is increasing at t=5.5 Since Velocity acceleration are the same sign

 $f_1(x) := 2sin(e^{x/4}) + 1$ $f_1(x) := 2sin(e^{x/4}) + 1$ $f_1(5.5) = -0.45337$ $f_2(x) := \frac{1}{2}e^{x/4}cos(e^{x/4})$ $f_2(x) := \frac{1}{2}e^{x/4}(f_1(x))$ $f_2(x) := \frac{1}{2}e^{x/4}(f_1(x))$