#/L% The Accumulation Function - Homework
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1. LetF(x) = ff(r) dit where the graph of f(x) is above (the graph consists of lines and a quarter circle)
0

a. Complete the chart
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b. On what subintervals of [0, 8] is Fincreasing? Decreasing? Justify your answer.
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c. Where in the interval [0, 8] does Fachieve its minimum value? What is the minimum value? Justify answer.
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d. Where in the interval [0, 8] does F achieve its maximum value? What is the maximum value? Justify answer.
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e. Find the concavity of Fand any inflection points. Justify answers.
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f. Sketch a rough graph of F(x) g o : : : :
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2. LetF ff t)dt where the graph of f( ) is above (the graph consists of lines and a semi-circle)
a. Complete the chart
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fI -V . On what subintervals of [—4,8] is /" increasing? Decreasing?
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. Where in the interval [ 4 8] does /" achieve its minimum value> What is the minimum value? Justify answer.
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. Where in the interval [ -4 8] does /" achieve its maximum va ue> “What is the maximum value? Justify answer.
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On what subintervals of [—4,8] is /" concave up and concave down? Find its inflection points. Justify
answers. F o Cw cCO
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Sketch a rough graph of F(x)
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(o oh e = A
t
(minutes) 0(2|5]9]10
H(z)
W A (degrees Celsius) 66 | 60 | 52 | 44 | 43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for 0 < ¢ < 10, where
time ¢ is measured in minutes and temperature H(¢) is measured in degrees Celsius. Values of H () at selected

values of time ¢ are shown in the table above. /

(a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time

t = 3.5. Show the com\gutations that lead to your answer,
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(b) Using correct units, explain the meaning of Tﬁj‘o H(t) dt in the context of this problem. Use a trapezoidal
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sum with the four subintervals indicated by the table to estimate f% X H(z) dr. over | ) N
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(c) Evaluate Jo H'(¢) dt. Using correct units, explain the meaning of the expression in the context of this

problem. (b( 0)=|00

(d) Attime ¢ = 0, biscuits with temperature 100°C were removed from an oven. The temperature of the

biscuits at time ¢ is modeled by a differentiable function B for which it is known that

F(t)= <18 Bl NI Using the given models, at time ¢ = 10, how much/€ooler are the biscuits than

the tea? EXCOEN
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Question 4

The continuous function f is defined on the interval —4 < x < 3.

The graph of f consists of two quarter circles and one line
segment, as shown in the figure above.

Let g(x) = 2x+f MGW UW%/’\
N

(a) Find g(—~3) Find g(x) and}vaiuate g'(=3):

(b) Determine thelx—coordmate)of the point at which g has an
absolute maximum on the interval —4 < x < 3.
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(¢) Find all values of x on the interval —4 < x <3 for which & }
the graph of g has a point of inflection. Give a reason for 3.-3)
your answer. qu changyo Sigr~ Sloge Kbg ,
(d) Find the average rate of change of f on the interval U“d"'g Graph of f
—4 < x £ 3. There is no point ¢, —4 < ¢ < 3, for which f'(¢) is equal to that average rate of chan =
Explain why this statement does not contradict the Mean Value Theorem. Q xe port
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Question 3

Let f be the continuous function defined on [~4, 3]

whose graph, consisting of three line segments and a
semicircle centered at the origin, is given above. Let g \ yo*z_

be the function given by g(x) = .[ f(6)dr. G
/ AS—axed
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Find the val f (2 d g(~2).
(a) Fin evauesi)/g()anﬁ( )
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(b) For each of g'(~3) and g”(-3), find the value or
state that it does not exist. Jz—(\) )

3,~1)
(c) Find the x-coordinate of each point at which the La(n®

graph of g has atiorizontal tangent line. For each z Graphoof f
ese points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor

% a maximum at the point. Justify your answers. / /
S (d) For —4 < x <3, find all values of x for which the graph of g has a point of inflection. Explain your
reasoning. AN cranglo Sigr
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Question 6

Let g be the piecewise-linear function defined on [-27, 47] v

whose graph is given above, and let f(x) = g{(x) - cos(%).

4.
(a) Find j’_; f(x) dx. Show the computations that lead to your

answer,

(b) Find ai@ue@ in the open interval (-2, 4x) for which f
has a critical point. C\_ 5 ov U '\M

Graph of g
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