\# 25 The Accumulation Function - Homework

1. Let $F(x)=\int_{0} f(t) d t$ where the graph of $f(x)$ is above (the graph consists of lines and a quarter circle)
a. Complete the chart

x	0	1	2	3	4	5	7	8
$F(x)$	0	2	$2 \pi / 2$	$\frac{1}{2}+\frac{1}{2}=4$	$4+1-5$	$5+1=6$	$6-(4-\pi)$ $3+\pi$ $2+\pi$ 2	$2+\pi \pi$
$F^{\prime}(x)$	2	2	1	0	2	0	-2	-4

$\begin{aligned} & \text { b. On what subintervals of }[0,8] \text { i } \\ & F \text { inc inc dec } \\ & F^{\prime} \stackrel{+}{3}+\frac{1}{5}\end{aligned}$
increasing? Decreasing? Justify your answer.
c. Where in the interval $[0,8]$ does F achieve its minimum value? What is the minimum value? Justify answer. Min value occurs dee \rightarrow inc or boundary pts \in lowest y-value

$$
\text { does not occur } \quad f(0)=0 \quad F(3)=-1+\pi>0
$$

d. Where in the interval $[0,8]$ does F achieve its maximum value? What is the maximum value? Justify answer. max valve occurs inc \rightarrow dec or boundary

$$
x=5 \quad F(5)=6
$$

e. Find the concavity of F and any inflection points. Justify answers.
F nocon.CDCU CD
slope of $=F_{f}^{\prime \prime}=f^{\prime}$
f. Sketch a rough graph of $F(x)$ use table of values from part a.

2. Let $F(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(x)$ is above (the graph consists of lines and a semi-circle)
a. Complete the chart

area

 $F^{\prime}(x)=f(x)$| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F(x)$ | $\pi-1$ | $\pi-\frac{1}{4}$ | π | | 0 | | $-\pi$ | $\frac{1}{2}-\pi$ | $2-\pi$ | $\frac{13}{2}-\pi$ | $10-\pi$ | $9-\pi$ | $6-\pi$ |
| $F^{\prime}(x)$ | 1 | $1 / 2$ | 0 | | -2 | | 0 | 1 | 2 | 7 | 0 | -2 | -4 | y-values

. On what subintervals of $[-4,8]$ is F increasing? Decreasing?

c. Where in the interval $[-4,8]$ does F achieve its minimum value? What is the minimum value? Justify answer. min value occurs dec \rightarrow inc or boundary $\quad F(2)=-\pi<0<$ most negative value

$$
x=2 \quad x=0,8 \quad \begin{array}{lll}
F(8)=6-\pi>0 \\
F(0)=\pi-1>0
\end{array}
$$

d. Where in the interval $[-4,8]$ does F achieve its maximum value? What is the maximum value? Justify answer. max value occurs inc \rightarrow dec or boundary $\quad F(-2)=\pi$

$$
\begin{aligned}
& x=-2 \\
& x=c a
\end{aligned}
$$

$F(6)=10-\pi<$ most positive valve
e. On what subintervals of $[-4,8]$ is F concave up and concave down? Find its inflection points. Justify

f. Sketch a rough graph of $F(x)$

Use table of values from part a

$\mathrm{H}^{\prime} \quad \mathrm{C} / \mathrm{min}$
rate of temp

Question 2

M					
t (minutes)	0	2	5	9	10
$H(t)$ (degrees Celsius)	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measured in minutes and temperature $H(t)$ is measured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above.
(a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time $t=3.5$. Show the computations that lead to your answer.
(b) Using correct units, explain the meaning of $\frac{1}{10} \int_{0}^{10} H(t) d t$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10} \int_{0}^{10} H(t) d t$. area $\frac{H(t)}{10 \mathrm{~min}} \rightarrow{ }^{\circ} \mathrm{C} \cdot \mathrm{mm}$
(c) Evaluate $\int_{0}^{10} H^{\prime}(t) d t$. Using correct units, explain the meaning of the expression in the context of this problem.
(d) At time $t=0$, biscuits with temperature $100^{\circ} \mathrm{C}$ were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B^{\prime}(t)=-13.84 e^{-0.173 t}$. Using the given models, at time $t=10$, how much cooler are the biscuits than the tea?

$$
B(10)=\text { ? }
$$

Question 4
The continuous function f is defined on the interval $-4 \leq x \leq 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.
Let $g(x)=2 x+\int_{0}^{x} f(t) d t$ area under f
(a) Find $g(-3)$. Find $g^{\prime}(x)$ and evaluate $g^{\prime}(-3)$.
(b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \leq x \leq 3$.
Justify youránswer, inc \rightarrow dec or bounderypt
(c) Find all values of x on the interval $-4<x<3$ for which the graph of g has a point of inflection. Give a reason for
your answer. g". Changes Sign
(d) Find the average rate of change of f on the interval

undif Graph of f
$-4 \leq x \leq 3$. There is no point $c,-4<c<3$, for which $f^{\prime}(c)$ is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem. fie part 1

Question 3

Let f be the continuous function defined on $[-4,3]$ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x)=\int_{1}^{x} \underbrace{f(t) d t}$.
(a) Find the values of $g(2)$ and $g(-2)$.
(b) For each of $g^{\prime}(-3)$ and $g^{\prime \prime}(-3)$, find the value or state that it does not exist.
(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each
 of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(d) For $-4<x<3$, find all values of x for which the graph of g has a point of inflection. Explain your reasoning. g" changes sign

Let g be the piecewise-linear function defined on $[-2 \pi, 4 \pi]$ whose graph is given above, and let $f(x)=g(x)-\cos \left(\frac{x}{2}\right)$.
(a) Find $\int_{-2 \pi}^{4 \pi} f(x) d x$. Show the computations that lead to your answer.
(b) Find allx-values in the open interval $(-2 \pi, 4 \pi)$ for which f has a critical point. $f^{\prime}=0$ or undif

Graph of g
(c) Let $h(x)=\int_{0}^{3 x} g(t) d t$. Find $h^{\prime}\left(-\frac{\pi}{3}\right)$.
area computation

b)

$$
\begin{array}{cc}
\begin{array}{c}
f^{\prime}(x)=g^{\prime}(x)+\frac{1}{2} \sin \left(\frac{x}{2}\right) \\
\text { Slope of } g \\
\text { change at } x=0
\end{array}
\end{array}= \begin{cases}0=1+\frac{1}{2} \sin \left(\frac{x}{2}\right) & -2 \pi<x<0 \\
0=\frac{f^{\prime} D W E}{2}+\frac{1}{2} \sin \left(\frac{x}{2}\right) & <x<4 \pi\end{cases}
$$

$$
\begin{aligned}
& 0=1+\frac{1}{2} \sin \left(\frac{x}{2}\right) \\
& \sin \left(\frac{y}{2}\right)=-2
\end{aligned}
$$

never happens
f has critical points at $x=0+x=\pi$.
C. $\left.\quad h(x)=\int_{0}^{3 x} g(t) d t=G(t)\right]_{0}^{3 x}=G(3 x)-G(0)$

$$
\begin{aligned}
h^{\prime}(x) & =\longrightarrow g(3 x) \cdot 3-0 \\
h^{\prime}(-\pi / 3) & =g\left(3\left(-\frac{\pi}{3}\right)\right) \cdot 3 \\
& =g(-\pi) \cdot 3 \\
& z \pi \cdot 3 \\
& =3 \pi
\end{aligned}
$$

