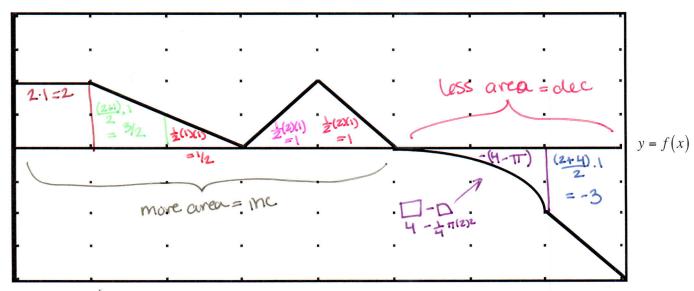
The Accumulation Function - Homework



1. Let $F(x) = \int f(t) dt$ where the graph of f(x) is above (the graph consists of lines and a quarter circle)

a. Complete the chart

	a. Com	orete tire e	iiiii t							
	X	0	1	2	3	4	5	7	8	
Fraveo	F(x)	0	2	24%====================================	圣世=4	441-5	5H=12	(9-(9-TT) = 2+TT	2+17-3	70
Fif	F'(x)	2	2	1	0	2	Ď	-2	-4	
=y ·valve		1 1:	1 - 0	· (O O) :- :	F:i) D	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

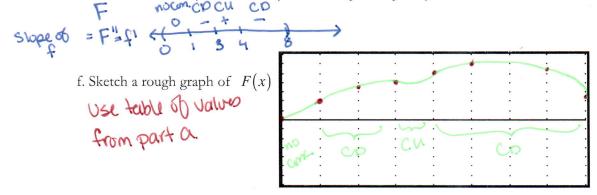
b. On what subintervals of [0, 8] is F increasing? Decreasing? Justify your answer.

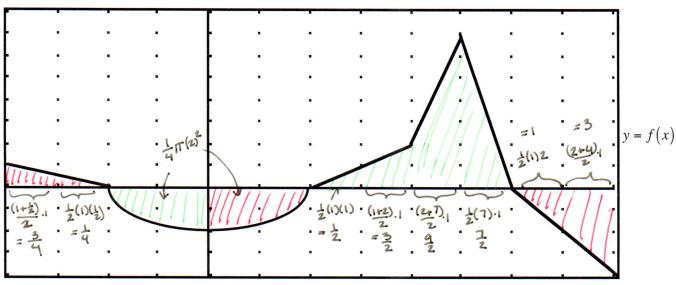
c. Where in the interval [0, 8] does Fachieve its minimum value? What is the minimum value? Justify answer.

d. Where in the interval [0, 8] does F achieve its maximum value? What is the maximum value? Justify answer. max value occurs inc > dec or boundary

$$\bigcirc x=5$$
 $F(5)=0$

e. Find the concavity of F and any inflection points. Justify answers.





2. Let $F(x) = \int_{0}^{x} f(t) dt$ where the graph of f(x) is above (the graph consists of lines and a semi-circle)

a. Complete the chart

area >

F'(x)=f6

X	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
F(x)	T-1	四古	H		0		-TT	之一丁	2-11	当一丁	10-11	9-11	6-11
F'(x)	1	1/2	0		-2		O	1	2.	7	0	-2.	-4

b. On what subintervals of $\begin{bmatrix} -4.8 \end{bmatrix}$ is F increasing? Decreasing?

Fire dec Inc dec Inc (4,-2) (2,6) F'X

c. Where in the interval [-4,8] does F achieve its minimum value? What is the minimum value? Justify answer.

MIN value occurs are the or boundary $F(x) = \pi = \pi = 0$ and $F(x) = \pi = 0$ where $F(x) = \pi = 0$ and $F(x) = \pi = 0$ are $F(x) = \pi = 0$.

d. Where in the interval [-4,8] does F achieve its maximum value? What is the maximum value? Justify answer.

max value occurs inc → dec or boundary

X=-2

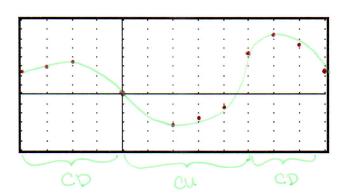
F(2) = 11 = most positivevalue

e. On what subintervals of [-4,8] is F concave up and concave down? Find its inflection points. Justify answers.

Slope of 7 = F" + 0 5 8

f. Sketch a rough graph of F(x)

Use table of values from part a



- Calculator

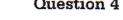
	1	15	15	75	7	
t (minutes)	0	2	5	9	10	
H(t) (degrees Celsius)	66	60	52	44	43	

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \le t \le 10$, where time t is measured in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.

- (a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time t = 3.5. Show the computations that lead to your answer.
- (b) Using correct units, explain the meaning of $\frac{1}{10}\int_0^{10}H(t)\,dt$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10}\int_0^{10}H(t)\,dt$. Or the four subintervals indicated by the table to estimate $\frac{1}{10}\int_0^{10}H(t)\,dt$. Using correct units, explain the meaning of the expression in the context of this

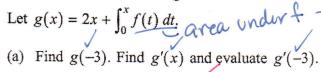
problem. (d) At time t = 0, biscuits with temperature 100°C were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B'(t) = -13.84e^{-0.173t}$. Using the given models, at time t = 10, how much cooler are the biscuits than the tea? B(10)=?

	B(10)2.
<u>a)</u>	H'(3.5) ≈ 52-60 = -8 ≈ -2.667 °C/min
	5-2 3
(d	10 So H(+)dt = 10 (60+60.2 + 60+52.3 + 52+44.4 + 44+43.1)
	=10(126 + 168 + 192 + 智) =1059 ≈ 52.95℃
	Ave value of
	H(+) 1050 Husd+ = 52.95°C is the average temperature from
	t=0 to t=10 mins
c)	JoH(4) dt = H(t)] = H(10) - H(0) = 43-66 = -23°C
	So H'(+)dt is the drop in temp for the first 10 mins of cooling
d)	Jo B'(+) dt = B(10) - B(0)
	cale 100 => B(10) = 34.18275
	-(e5.81724 = B(10)-100
	H(10)-B(10) = 43-34.18275 = 8.81725
	thow much cooler are the biscuits?
	The Biscuits are 8.817°C cooler from the tea.

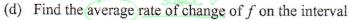


The continuous function f is defined on the interval $-4 \le x \le 3$.

The graph of f consists of two quarter circles and one line segment, as shown in the figure above.



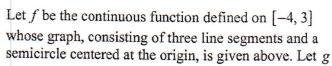
- (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer, inc > dec or boundarypt
- (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer. 9" changes Sign



 $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change.

	4	1 Und	Solo
* Julyall	-)	
14500			
(3)	TT (3)		
7 =	नुग ।		<u> </u>
15	r=3	1	W= 13
(-4, -1)			M= 3
		No.	
Slope of	f †	(3, -3)	•
Undy			

Expl	ain why this statement does not contradict the Mean Value Theorem	n. Efte part I
a)	$g(-3) = 2(-3) + \int_{-3}^{-3} f(+) dt$ $g'(x) = 2$ = $-6 - \int_{-3}^{3} f(+) dt$ $g'(-3) = 2$	+ f(x)
	$=-6-5^{\circ}_{3}f(t)dt$ $q'(-3)=2$	+ f(-3)
	= -(0 - 911 = 2	_+0 = 2
b)	g'(x) = 2 + f(x)	
	0 = 2+f(x)	
	f(x) = -2 + when does the graph	of f have y-value = 2
P. T.	~	max
	y = -2 on $y = -2x + 3$ 9 inc	
	y=-2 on $y=-2x+3$ 9 inc -2=-2x+3 9 $+x=\frac{5}{2}$	+ + + + + + + + + + + + + + + + + + + +
	X=5/2 -4	1 1/2 3
	9'6-	3)70 by parta
	max at x = 2.5 since the q'	(2.75) = 2 + f(2.75) < 0
	Sign of g' change from positive	Z-2
	to negative	
		, « ₁ ,
(C)	g cu cu cp g'(x)	=2+f(x)
	9"-4-3 0 3 9"(x)	= 2 + f(x) $= f'(x) = 0 $ Slupe of $f = 0$: or $g''(x) = 0$ Change
	ghas a point of inflection at x=0 si	nce g"(x) change oronar
	Sign at x=0.	
-1)	A (3) - f(-4) - 3 +1 -2/	



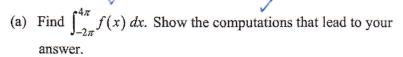
be the function given by $g(x) = \int_{1}^{x} f(t) dt$.

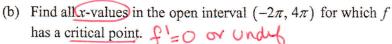
- (a) Find the values of g(2) and g(-2).
- (b) For each of g'(-3) and g''(-3), find the value or state that it does not exist.
- (c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.

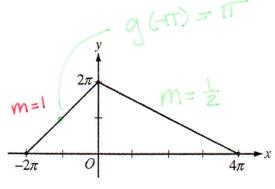
(d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

	g" change sign
$g(2) = \int_{1}^{2} f(t) dt$	$q(-2) = S^{-2} f(t) dt = -S^{-1}_{-2} f(t) dt$
= = (1)(-=) = -1/4	$g(-2) = \int_{-2}^{2} f(t)dt = -\int_{-2}^{1} f(t)dt$ = $-\left(\frac{3}{2} + \frac{\pi}{2}\right) = -\frac{(3+\pi)}{2} = \frac{-3-\pi}{2}$
*	•
g'(x) = f(x) < y-valve off	9"(x) = f'(x) = Slope of f
g'(-3) = f(-3)	q''(-3) = f'(-3)
- 2	= 1
g'(x) = f(x) = 0 9	inc due due
$X = +1, -1 \qquad \qquad g' = f$	*(+ + - + - + >)
4-2000	-4 -1 1 3
ofhane	what sign?
x=-1 is a relative maxim	ium since g' change from positive
to negative. X=1 is neither	because q' does not changesign.
	3
q"=f'(x)=0 or undy.	g cu co co cy co
slope offis or undy	f'= q" <(+, -, -, -, -, -, -, -, -, -, -, -, -, -,
X = -2, -1, D, 1	Slope of 72 - 0 1 3
	t Changein Concauty
ghas points of inflection	γ at $\chi = -2$, 0 , 1 eleans
a" change Sign at those	valves.
5	
·	. *
	g'(-3) = f(-3) $= 2$ $g'(x) = f(x) = 0$ $x = +1, -1$ $g' = f$ $y - valvo$ $obfhave$ $x = -1 is a relative maxim$

Let g be the piecewise-linear function defined on $[-2\pi, 4\pi]$ whose graph is given above, and let $f(x) = g(x) - \cos(\frac{x}{2})$.







Graph of g

1143	a critical point. 7 =0 67 Orac	Graph of g	
(c) Let	$h(x) = \int_0^{3x} g(t) dt. \text{ Find } h'\left(-\frac{\pi}{3}\right).$	area	computation
a)	$\int_{-2\pi}^{4\pi} f(x) dx = \int_{-2\pi}^{4\pi} (g(x) - \cos(\frac{x}{2}))$)) dx = 54n g(x) dx	- 5-20 cus(x)dx
		之((4円)(2円)	- 0
	C411 7411	(e m 2	
	$\left \cos(\frac{x}{2}) dx = 2\sin(\frac{x}{2}) \right = 2s$	Sin(望) - 2Sin(望)
規[sin(ž)]		Sin (211) - 25in (-11)	
= COS 2 · 1		(0) - 2(0)	
	-0		
	$\int_{-2\pi}^{-2\pi} f(x) dx = (6\pi^2)$		
. 1			
b)	$f'(x) = q'(x) + \frac{1}{2} Sin(\frac{x}{2}) = ($	D= 1 + \(\frac{1}{2}\)	-211 < X<0
	Slope of g	,	4 FI DNE
	change at x=0	O= = + = Sin(美)	0< X < 4T
		+ ZSMZ	
		芝)=1 と日=72 S	mθ=1
1	never happins ==	17/2	
-	Χe	T	
-	f has critical points at x=0) + X=T.	
-	03X		, ***2g
С.	$h(x) = S_0^{3x} g(t) dt = G(t) J_0^{3x}$	=G(3x)-G(0)	
	h'(x) =	→ g(3x)·3~0	's
	h (-1/3) = g (3(-3)).3		
	= 9(-11).3		si .
	y-valve 2 11.3		
	m 9 =3T		·
	I I		