The Accumulation Function - Classwork

Now that we understand that the concept of a definite integral is nothing more than an area, let us consider a very special type of area problem. Suppose we are given a function $f(x)=2$. We know that to be a horizontal line at $y=2$. First, realize that the equation of the graph of $f(x)=2$ is the same as $f(t)=2$ is the same as $f(k)=2$. Whether we use x, t, or k, it does not matter. The graph is still a horizontal line. We are used to using x but we will see a good reason that we will occasionally be using another letter.

Above, we have the graph $f(t)=2$. We now want to consider the expression $\int_{0}^{x} f(t) d t$. What is this? It is a function of x. As x changes, $\int_{0}^{x} f(t) d t$ changes as well. Complete the chart below.

x	0	1	2	3	4	5
$\int_{0}^{x} f(t) d t$	$2(0-0)$	$2(1-0)$	$2(2-0)$	$2(3-0)$	$2(4-0)$	$2(5-0)$
$2(x-0)$						
$2 x$						

It should be apparent that as x gets bigger, $\int_{0}^{x} f(t) d t$ increases as well. What we appear to be doing is "accumulating area" and we call $\int_{0}^{x} f(t) d t$ the accumulation function. Finally, it should be obvious why we use $f(t)=2$ to describe our line rather than $f(x)=2 . \int_{0}^{x} f(x) d x$ would be confusing.

Let's calculate the value of
$\int_{0}^{x} f(t) d t$ for $x=0$ to 4 Complete the chart below

x	0	1	2	3	4
$\int_{0}^{x} f(t) d t$	$\frac{1}{2}(0)(0)$	$\frac{1}{2}(1)(1)$	$\frac{1}{2}(2)(2)$	$\frac{1}{2}(3)(3)$	$\frac{1}{2}(4)(4)$
	0	$1 / 2$	2	$9 / 2$	8

$$
f(x) \frac{\text { in }}{h r r} x \text { hrs } \int_{1}^{2} f\left(x d x=\frac{3 \text { in }}{n r r} .1 h r=3\right. \text { in }
$$

Example 1) Let $F(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(x)$ is below. Remember from $f(x)$ to 2 in obs snow has Think of $f(x)$ as the rate of snowfall over a period of time. For instance, at $x=1$, snow is falling at 3 inches per hour, at $x=3$, it is not snowing, and at $x=4$, snow is melting at 4 inches per hour.

a. Complete the chart. In the snow analogy, $F(x)$ represents the accumulation of snow over time.

| areaufl |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| inf |
| if | | x | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $F(x)$ | 0 | 2 | $2+3$ | 6.5 | 4.5 | 2.5 |

b. Now let's consider $F^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t$. If we take the derivative of an integral, what would you expect to happen? UndO So $F^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t$ is the same thing as $\quad f(X)$.
Knowing that, let's complete the chart.
y-value

x	0	1	2	3	4	5	6	6.5	7	8
$F^{\prime}(x)$	1	3	3	0	-4	0	1	0	-1	-1

of f amtobsnow
c. On what subintervals of $[0,8]$ is F increasing? Decreasing?

$$
(0,3)(3,5)(5,6.5)(6.5 .8)
$$

inc dee inc dec
d. Where in the interval $[0,8]$ does F achieve its minimum and maximum value? What are those values?
\rightarrow Whereis amt of snow higher + lowest

$$
\max : x=3 \quad \min x=5 \quad \min x=0,8
$$

f. Find the concavity of F and any inflection points. Justify your answer

$\rightarrow \uparrow<\downarrow$
Example 2) Let $F(x)=\int_{0}^{x} f(t) d t$ where f is the function graphed below (consisting of lines and a semi-circle)
area

$$
y \text {-values }
$$

Find the following:
a) $F(0)=0$
e) $F(-1)=-1$
i) $F^{\prime}(4)=f(4)$

$$
=0
$$

$$
\frac{\pi(2)^{2}}{2}=2 \pi
$$

d) $F(6)=2+-2$ 04.28
f) $F(-2)=-3$
g) $F(-3)=-3$
h) $F(-4)=-2$
k) $F^{\prime}(6)=-2$

1) $F^{\prime}(-3)=-2$

$$
F(-1)=f(-1)=2
$$

m) On what subintervals of $[-4,6]$ is F increasing and decreasing. Justify your answer.

$$
\operatorname{Dec}(-4,-2.5) \text { inc }(-25,4) \operatorname{\operatorname {Dec}}(4,6)
$$

n) Where in the interval $[-4,6]$ does F achieve its minimum value? What is the minimum value? minvalue is -3.5 , at $x=-2.5$, wremea ${ }^{2}$,
o) Where in the interval $[-4,6]$ does F achieve its maximum value? What is the minimum value?

$$
\text { max value is } 2 \pi \text {, at } x=4
$$

p) Where on the interval $[-4,6]$ is F concave up? Concave down? Justify your answer.

$$
>F^{\prime \prime}
$$

q) Where does F have points of inflection?
r) Sketch the function F. concavity
each tic mark on y-axis is 2 units

Question 1

The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $W(t)$ at selected times t for the first 20 minutes are given in the table above. of $t=12$
(a) Use the data in the table to estimate $W^{\prime}(12)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) Use the data in the table to evaluate $\int_{0}^{20} W^{\prime}(t) d t$. Using correct units, interpret the meaning of $\int_{0}^{20} W^{\prime}(t) d t$ in the context of this problem.
(c) For $0 \leq t \leq 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_{0}^{20} W(t) d t$. Use a left Riemann sum rectangle with the four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_{0}^{20} W(t) d t$. Does this approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning.
(d) For $20 \leq t \leq 25$, the function W that models the water temperature has first derivative given by $W^{\prime}(t)=0.4 \sqrt{t} \cos (0.06 t)$. Based on the model, what is the temperature of the water at time $t=25$?

