AP ${ }^{\circledR}$ CALCULUS AB 2011 SCORING GUIDELINES

$$
W(0)=1400 \quad \text { Question } 5
$$

$\omega^{\prime}>0$

At the beginning of 2010, a landfill contained 1400 tons of solid waste. The mereasing function models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010. $\quad y-y_{1}=\frac{d w}{d t}\left(t-t_{1}\right) \quad>(0,1400)$
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or $\xrightarrow{\text { an overestimate of the amount of solid waste that the landfill contains at time } t=\frac{1}{4} \text {. }}$
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400 . \rightarrow$ Separate, integrate, $+C$, initial cone, solve fer w

$$
\text { a) } \begin{aligned}
(0,1400) & \left.\frac{d W}{d t}\right|_{W=1400}
\end{aligned}=\frac{1}{25}(1400-300)=\frac{1100}{25}=440
$$

b) $\frac{d}{d t}\left(\frac{d w}{d t}\right)=\frac{d^{2} \omega}{d t^{2}}=\frac{1}{25}\left(\frac{d w}{d t}\right)=\frac{1}{25}\left(\frac{1}{25}(\omega-300)\right)=\frac{1}{625}(w-300)$

Since $\frac{d^{2} w}{d t^{2}}>0$ the graphof w is
c) $\int \frac{1}{w-300} d w=\int \frac{1}{25} d t$

$$
\ln |w-300|=\frac{1}{25} t+C
$$

$$
e^{\frac{t}{35}+c}=w-300
$$

AP ${ }^{\oplus}$ CALCULUS AB 2010 SCORING GUIDELINES

Question 6

Solutions to the differential equation $\frac{d y}{d x}=x y^{3}$ also satisfy $\frac{d^{2} y}{d x^{2}}=y^{3}\left(1+3 x^{2} y^{2}\right)$. Let $y=f(x)$ be a particular solution to the differential equation $\frac{d y}{d x}=x y^{3}$ with $f(1)=2$.
(a) Write an equation for the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Use the tangent line equation from part (a) to approximate $f(1.1)$. Given that $f(x)>0$ for $1<x<1.1$, is the approximation for $f(1.1)$ greater than or less than $f(1.1)$? Explain your reasoning.
(c) Find the particular solution $y=f(x)$ with initial condition $f(1)=2$. Separate, integrate, tC, solve fury initial cold.
a) $\left.(1,2) \quad \frac{d y}{d x}\right|_{(1,2)}=(1) 2^{3}=8 \quad y-2=8(x-1)$
b).

$$
\begin{aligned}
& f(1.1) \approx y(1.1)=8(1.1-1)+2 \\
&=8(.1)+2=2.8 \\
& \frac{d^{2} y}{d x^{2}}=y^{3}\left(1+3 x^{\frac{x^{2}}{} y^{2}}\right)>0 \\
&>0
\end{aligned}
$$

$f(1.1) \approx 2.8$
$y=f(x)$ is concave ip So the approximation is less than $f(1.1)$
C) $\int \frac{1}{y^{3}} d y=\int x d x$

$$
-2\left(\frac{y^{-2}}{-2}=\frac{x^{2}}{2}+c\right)
$$

$$
\frac{1}{y^{2}}=-x^{2}+c \quad(1,2)
$$

$$
\frac{1}{4}=-1^{2}+c
$$

$$
C=\frac{4}{4}+\frac{1}{4}=5 / 4
$$

$$
\frac{1}{y^{2}}=-x^{2}+5 / 4
$$

2010 SCORING GUIDELINES (Form B)

Question 5
Consider the differential equation $\frac{d y}{d x}=\frac{x+1}{y}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for $-1<x<1$, sketch the solution curve that passes through the point $(0,-1)$.
(Note: Use the axes provided in the exam booklet.)
(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane for which $y \neq 0$. Describe all points in the $x y$-plane, $y \neq 0$, for which $\frac{d y}{d x}=-1$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=-2$.
\qquad
a) See diagram
b) $\quad \frac{d y}{d x}=\frac{x+1}{y}=-1 \quad y \neq 0$

$$
x+1=-y
$$

$$
y=-x-1 \text { is the set of all }(x, y) \text { such that } \frac{d y}{d x}=-1
$$

\qquad

$$
\text { c) } \begin{array}{r}
\int y d y=\int(x+1) d x \\
\frac{y^{2}}{2}=\frac{x^{2}}{2}+x+c
\end{array}
$$

$$
\left\{\begin{align*}
y^{2} & =x^{2}+2 x+c \\
(-2)^{2} & =0^{2}+2(0)+c \tag{0,-2}\\
c & =4 \\
y^{2} & =x^{2}+2 x+4 \\
y & = \pm \sqrt{x^{2}+2 x+4} \\
y & =-\sqrt{x^{2}+2 x+4}
\end{align*}\right.
$$

\qquad
\qquad

Since $\frac{(0,-2)}{\pi}$

AP ${ }^{\oplus}$ CALCULUS $A B$ 2005 SCORING GUIDELINES

Question 6
Consider the differential equation $\frac{d y}{d x}=-\frac{2 x}{y}$.
a) $x=0 \quad \frac{d y}{d x}=0$
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
(Note: Use the axes provided in the pink test booklet.)
(b) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(1)=-1$. Write an equation for the line tangent to the graph of f at $(1,-1)$ and use it to approximate $f(1 . I)$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(1)=-1$.

\qquad
a) See diagrám
b) $(1,-1) \quad \frac{d y}{d x}\left((1,-1)=\frac{-2(1)}{-1}=2 \quad y+1=2(x-1)\right.$

$$
\begin{aligned}
f(1.1) \approx y(1.1) & =2(1.1-1)-1 & = & f(1.1) \approx=.8 \\
& =2(.1)-1 & =-.8 &
\end{aligned}
$$

c) $\int y d y=\int-2 x d x$

$$
\frac{y^{2}}{2}=-x^{2}+c
$$

since $\left(1,-\frac{1}{\lambda}\right)$

