Intervals

(a, b) is the open interval from x=a to x=b, this interval does NOT include the points a and b.

[a, b] is the closed interval from x=a to x=b, this interval DOES include the points a and b.

(a, b] and [a, b) are the CLOPEN (aka half open or half closed) interval containing one, but not both of the endpoints.

yes Maceo, clopen is a word

±∞ can be considered both open and closed

Types of Discontinuities

revisited with calculus

Infinite Discontinuity (a.k.a. vertical asymptote, a.k.a non removable discontinuity) - a denominator that cannot be reduced. the limit is infinite as x approaches c $\lim_{x\to c} f(x) = \pm \infty$

Point Discontinuity (a.k.a. hole, a.k.a. removable discontinuity) - a denominator that can be reduced.

the limit exists but does not equal f(c)

Jump Discontinuity - usually a piecewise function located at the boundary point.

the limit from the left and right do not agree

Types of Continuity

Continuity at a point - a function f is continuous at a point, x=c, if the following THREE conditions are met:

1.
$$\lim_{x\to c} f(x)exists$$
 eliminating jump and oscillating

2.
$$f(c)$$
 is defined eliminating infinite

3.
$$\lim_{x\to c} f(x) = f(c)$$
 eliminates point

Continuity on an open interval - a function is continuous on an open interval (a, b) if the function is continuous at every point in the interval.

Left Continuous -
$$\lim_{x \to c^{-}} f(x) = f(c)$$

Right Continuous -
$$\lim_{x\to c^+} f(x) = f(c)$$

5 Limits and Continuity

Ex 1) Describe the type of discontinuities using limits.

$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 9} < \frac{(x - 3)(x - 2)}{(x + 3)(x - 3)}$$

$$x - 3 = 0$$

$$x = 3$$

$$x + 3$$

$$x + 3$$

$$x + 3$$

$$x - 3$$

$$x + 3$$

$$f(3) = Undef$$

 $\chi = -3$ is a point dis.
 $\chi = -3$ is an infinite disc.

Its called a REMOVABLE discontinuity because we can REMOVE the discontinuity. e.g.

$$g(x) = \begin{cases} +(x) & x \neq 3, -3 \\ x = 3 \end{cases}$$
Plugging the
$$x = -3$$
Nole
$$x = -3$$

Ex 2) Describe the discontinuities using limits

$$f(x) = \begin{cases} x^2 - 1 & x < 2 \\ 2x + 4 & x \ge 2 \end{cases}$$

$$||m(x^{2}-1)|| = 2x+4$$

$$||m(x^{2}-1)|| = 2x+4$$

$$||m(x^{2}-1)|| = 2(2)+4$$

$$= 2(2)+4$$

$$= 3$$

 $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc <math>\omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$ $f(x) has a jump disc \omega f x = 2$

$$f(x) = \begin{cases} x^{2} + ax + b & x < -1 \\ x^{2} + 2b + 1 & -1 \le x \le 2 \end{cases}$$

$$3x - a & x > 2$$

$$\lim_{x \to -1} x^{2} + ax + b = \lim_{x \to -1} x^{2} + 2b + 1$$

$$1 - a + b = 1 + 2b + 1$$

$$-a = + 1 + b$$

$$a = -1 - b$$

$$1 = \lim_{x \to 2^{-1}} x^{2} + 2b + 1 = \lim_{x \to 2^{-1}} 3x - a$$

$$x \to 2$$

$$2b + 5 = (a - a) \quad b = 2$$

$$a = -2b + 1 \Rightarrow a = -3$$

$$b = \frac{a - 1}{a}$$

Ex 3) Find the value of that would make the

Ex 3) Find the value of a that would make the function continuous.

$$f(x) = \begin{cases} x^2 - c & x < 5 \\ 4x + 2c & x \ge 5 \end{cases}$$

$$1. \lim_{x \to c} f(x) = x = x < 5$$

$$2. f(c) \text{ is defined}$$

$$2. f(x) = x = x < 5$$

$$3. \lim_{x \to c} f(x) = f(c)$$

$$3. \lim_{x \to c} f(x) = f(c)$$

$$3. \lim_{x \to c} f(x) = f(c)$$

5 = 3 C = 5/3 Valve frat
<math display="block">make its make its Valve frat
<math display="block">make its make its Valve frat
<math display="block">make its Valve frat
<math display="block">Valve frat
<math display="block">Valve frat Valve frat

$$f(5) = \begin{cases} 4(5) + \frac{10}{3} \\ + (5) = \frac{70}{3} \end{cases}$$

$$f(5) = \frac{70}{3} \Rightarrow \begin{cases} 4(5) + \frac{10}{3} \\ + (5) = \frac{70}{3} \end{cases}$$

$$f(x) = f(5)$$

$$x \to 5$$

$$\frac{70}{3} = \frac{70}{3} \Rightarrow \begin{cases} 4(5) + \frac{10}{3} \\ + (5) = \frac{70}{3} \end{cases}$$

$$\frac{1}{(x-5)(x+2)} \times cs$$

Ex 4) Describe the continuity and discontinuity of the graph

$$X = -1, 0, 1$$

$$\lim_{X \to -1} f(X) = 3$$

$$\lim_{X \to -1} f(X) = \lim_{X \to 0^{+}} f$$

Ex 5) Determine if the function is continuous at the boundary point.

$$f(x) = \begin{cases} 3-x & x < 2 \\ 1 & x = 2 \end{cases}$$

$$|x| = |x| = |x|$$

$$|x| = |x|$$

$$|x|$$

$$|x| = |x|$$

$$|x|$$

$$|x| = |x|$$

$$|x|$$

- 5. The graph of the function f is shown above. Which of the following statements is false?
 - (A) $\lim_{x\to 2} f(x)$ exists.
 - (B) $\lim_{x\to 3} f(x)$ exists.
 - (C) $\lim_{x\to 4} f(x)$ exists.
- (D) $\lim_{x \to 5} f(x)$ exists.
- (E) The function f is continuous at x = 3.

$$f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2} & \text{for } x \neq 2\\ k & \text{for } x = 2 \end{cases}$$

et f be the function defined above. For what value of k is f continuous at x = 2?

$$f(x) = \begin{cases} (2x+1)(x-2) \\ (x-2) \end{cases} x \neq 2$$

$$f(x) = \begin{cases} (2x+1)(x-2) \\ (x-2) \end{cases} x \neq 2$$

What type of disc. is present work

Point

$$\lim_{\chi \to 2} \frac{(2\chi + 1)(\chi - 2)}{(\chi - 2)}$$

$$2(2)+1=5$$
 $k=5$

INTERMEDIATE VALUE THEOREM.

If f is a function that is continuous over the interval [a,b] and \underline{m} is some number between $\underline{f(a)}$ and $\underline{f(b)}$, then there exists a number \underline{c} between \underline{a} and \underline{b} such that $\underline{f(c)} = m$.

existance theorem

Example 1) Is any real number exactly 1 less than its cube?

$$X = X^{3} - 1$$

$$X = X^{3} - X$$

$$X = X^{3} - X$$

$$X = X^{3} - X$$

$$0 = \chi^3 - \chi - 1$$

$$f(x) = \chi^3 - \chi - 1$$

$$g(1) = 0$$
 $g(2) = 0$

Example 2) Let f(x) be continuous on [-5, -2] with some of the values shown on the following table:

X	-5	-4	-2
f(x)	-11	а	-3

If f(x)=-1 has no solutions on the interval [-5, -2], which of the following are possible values for

Example 3) Use the intermediate value theorem to show that the polynomial has a zero in the interval [0, 1].

$$f(x) = x^3 + 2x - 1$$

$$f(0) = -1$$

$$f(1) = 2$$

$$f \text{ is } cts \text{ b/c } \text{ it is a polynomial}$$

$$Since f(0) < 0 < f(1), by the$$

$$TVT + here \text{ is a C in [0, 1]}$$

$$Such that f(c) = 0$$

Example 4)

Question 3

x	f(x)	f'(x)	g(x)	8(1)
1	6	4	2	5
2	9	(2)	3	
3	10	4	4	M
4	-1	3	6	M

Continuous

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table above gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

given by n(x) = f(g(x)) - 6.

(a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

$$h(X) = f(g(X)) - (g(X)) - (g$$

$$h(1) = f(g(1)) - 6$$
 $h(3) = f(g(3)) - 6$
 $= f(2) - 6$
 $= f(4) - 6$
 $= -1 - 6$

h is rontinuous b/c f+g are cts, and h(3) < -5 < h(1) by the IVT there exists a value r between [1,3] there exists a value r between [1,3] Such that h(r) = -5.

Example 5)

Let f be a function that is continuous on the closed interval [2, 4] with f(2) = 10 and f(4) = 20. Which of the following is guaranteed by the Intermediate Value Theorem?

f(x) = (13) has at least one solution in the open interval (2, 4).

(B) f(x) = (15)(B) f(x) = (15)

f(4) = 20

f(2) = 10

Example 6) Verify that the intermediate value theorem applies, then find the value of c guaranteed by the theorem.

$$f(x) = x^2 - 6x + 8$$
 on $[0,3]$ $f(c) = 0$

f is continuous because f is a polynomial, also f(3)<0< f(0) so by the intermediate value theorem there exists a value c in [0, 3] such that f(c)=0.

$$0 = x^{2} - (ex + 0)$$
 $0 = (x - 2)(x - 4)$
 $0 = (x - 2)(x - 4)$
 $0 = (x - 2)(x - 4)$

Example 7) Verify that the intermediate value theorem applies, then find the value of c guaranteed by the theorem.

$$f(x) = x^{2} + x - 1 \text{ on } [0,5]$$

$$f(0) = -1$$

$$f(5) = 24$$

$$f(c) = 11$$

$$11 = c^{2} + c - 1$$

$$0 = c^{2} + c - 12$$

$$= (c + 4)(c - 3)$$

$$0 = -4 \cdot 3$$

$$0 = -4 \cdot 3$$

-1 on [0,5]
$$f(c)=11$$
 $f(c)=11$
 $f(c)=11$
 $f(c)=11$
 $f(c)=11$
 $f(c)=11$
 $f(c)=11$

Example 8) Show $e^x = -\ln x$ has a solution.

$$0 = e^x + \ln x$$
$$f(x) = e^x + \ln x$$

The domain of In is all posive x values, so the funcon is connuous for all x>0. Since e^x is ALWAYS posive, we only need to consider ln(x) which changes from negave values to posive values at x=1.

$$f(0^+) = e^{0^+} + \ln(0^+) < 0$$

 $f(1) = e^1 + \ln(1) > 0$

f is continuous on $(0,\infty)$ and $f(0^+)<0< f(1)$ by the intermediate value theorem there exists a value c in [0,1] such that f(c)=0. Therefore there is a solution to the equation above.