Limits: Tabular (table) and Graphical Approach

Limit: where a function is supposed to get to.

as x approaches (get VERY close) to a certain number, what is the y value SUPPOSED to be

what is happening to the y-value when x gets close to a certain value

$$\lim_{x \to a} f(x) =$$

"the limit of f(x) as x approaches a is"

"the limit as x approaches a of f(x) is"

Graphical Approach

Tabular Approach

X	.5	.8	.9	.99	.999	1
f(x)	3.5	3.8	3.9	3.99	3.999	?

$$\lim_{x \to 1^{-}} f(x) =$$

Different types of limits

Left hand limit
$$\lim_{x \to a^{-}} f(x) =$$

approaching from the

table looks at numbers

less than a

Right hand limit
$$\lim_{x \to a^+} f(x) =$$

approaching from the RIGHT

table looks at numbers greater than a

In order for a LIMIT to exists, both sides must AGREE!!

Three causes for DNE (does not exist):

- 1) LHL≠RHL
- 2) Oscillating behavior (like sin)
- 3) Unbounded (±∞)

keep in mind, $\pm \infty$ are not real numbers, infinity is a description, an idea, so TECHNICALLY a limit can be DNE and infinity...

BUT our goal is to give the best DESCRIPTION!!

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 2$$

$$\lim_{x\to 1} f(x) = \text{ f(1)} = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to$$

$$\lim_{x\to 1} f(x) = \bigcap f(1) = \bigcap$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) =$$

$$\lim_{x \to 1} f(x) = \int_{x \to 1} f(1) = \int_{x$$

$$\lim_{x \to 4} f(x) = -2$$

$$\lim_{x \to 4} f(x) =$$

$$\lim_{x \to 4} f(x) =$$

$$f(4) = -2$$

$$\lim_{x\to 2^{-}} f(x) = \bigcirc$$

$$\lim_{x\to 2^+} f(x) = -\bigcirc$$

$$\lim_{x\to 2} f(x) = \text{ or } f(2) = \text{ or } f(2)$$

$$f(2) = V \wedge V$$

$$\lim_{x\to -\infty} f(x) = 0$$

$$\lim_{x\to\infty}f(x)=0$$

$$\lim_{x\to -2^-} f(x) = \bigcirc$$

$$\lim_{x \to -2^+} f(x) = \bigcirc$$

$$\lim_{x\to -2} f(x) = \bigcirc$$

$$\lim_{x \to -2^{+}} f(x) = \int_{-2^{+}}^{2^{+}} f$$

$$\lim_{x\to -\infty} f(x) = \bigcirc$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to -\infty} f(x) = \bigcirc$$

$$\lim_{x\to\infty}f(x)=-\infty$$

$$\lim_{x\to -\infty} f(x) = -$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to -\infty} f(x) = \bigcirc$$

$$\lim_{x\to\infty} f(x) = \bigcirc$$

Tabular Approach

keeping in mind that BOTH SIDES MUST AGREE for a limit to exist, when we look at tables we need to look at both the left and right side.

Desmos

Example 13

$$\lim_{x \to -3} \frac{\sqrt{1 - x} - 2}{x + 3} = -.25$$

	x	-4	-3.1	-3.01	-3.001	-3	-2.999	299	-2.9	-2
Г	f(x)	2360	2484	2498	2499	?	25001	2501	2515	2679

Example 14

$$\lim_{x \to 0} \cos\left(\frac{1}{x}\right) = \mathsf{DNE}$$

x	1	01	001	0001	0	.0001	.001	.01	.1
f(x)	8390	.8623	. 5623	9521	?	9521	.5623	.8623	8390

The function is oscillating close to zero so the limit does not exist

Example 15

$$\lim_{x \to 2} \frac{|x-2|}{x-2} = \mathsf{DNE}$$

x	1	1.5	1.9	1.99	2	2.01	2.1	2.5	3
f(x)	-1	-1	-1	-1	?	1	1	1	1

$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = -1$$

$$\lim_{x \to 2^{+}} \frac{|x-2|}{x-2} = 1$$

The limit does not exist because the left and right hand limit do not agree.