\qquad

$	$	1. Find the second derivative of $x^{2} y=2$.	
(A) $\frac{6 y}{x^{2}}$ (B) $\frac{x^{2}}{y}$ (C) $\frac{y}{x^{2}}$ (D) $-\frac{6 y}{x^{2}}$	(E) $-\frac{x^{2}}{6 y}$		

2. If $\frac{d y}{d x}=-x \cos \left(x^{2}\right)$ and $y=2$ when $x=0$, then a solution to the differential equation is
(A) $y=-\frac{1}{2} \sin \left(x^{2}\right)$
(B) $y=-\frac{1}{2}(\cos x)^{2}+2$
(C) $y=-\frac{1}{2}(\sin x)^{2}+2$
(D) $y=-\frac{1}{2} \cos \left(x^{2}\right)+2$
(E) $y=-\frac{1}{2} \sin \left(x^{2}\right)+2$
3. $\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-2 x^{2}}{h}$
(A) 4
(B) $3 x^{2}$
(C) $2 x^{2}$
(D) $4 x$
(E) $6 x$
4. $\int 18 x^{2} \sec ^{2}\left(3 x^{3}\right) d x=$
(A) $2 \tan ^{2}\left(3 x^{3}\right)+C$
(B) $2 \cot ^{2}\left(3 x^{3}\right)+C$
(C) $\cot \left(3 x^{3}\right)+C$
(D) $\tan \left(3 x^{3}\right)+C$
(E) $2 \tan \left(3 x^{3}\right)+C$

5. Find $\frac{d y}{d x}$ if $2 y^{2}-6 y=x^{4}+2 x^{3}-2 x-5$ at $(1,1)$ (A) -1 (B) -2 (C) -3 (D) -4 (E) -5	
6. Is the function $f(x)=\left\{\begin{array}{ll}x^{3}-3, & x<3 \\ 2 x+7, & x \geq 3\end{array}\right.$ continuous at $x=3$? If not, what is the discontinuity? (A) The function is continuous (B) Point (C) Essential (D) Jump (E) Removable	
*7. $\int_{0}^{\frac{\pi}{4}} \sin x d x+\int_{-\frac{\pi}{4}}^{0} \cos x d x=$ (A) $-\sqrt{2}$ (B) -1 (C) 0 (D) 1 (E) $\sqrt{2}$	
*8. If $f(x)=3 x^{2}-x$ and $g(x)=f^{-1}(x)$, then $g^{\prime}(10)$ could be (A) 59 (B) $\frac{1}{59}$ (C) $\frac{1}{10}$ (D) 11 (E) $\frac{1}{11}$	
*9. The graph of $y=x^{3}-2 x^{2}-5 x+2$ has a local minimum at (A) $(2.120,0)$ (B) $(2.120,-8.061)$ (C) $(-0.786,0)$ (D) $(-0.786,4.209)$ (E) $(0.666,-1.926)$	

