\qquad

1. Find $\lim _{x \rightarrow \infty} 3 x e^{-3 x}$
(A) $\frac{1}{3}$
(B) 3
(C) -1
(D) 1
(E) 0
2. $\int x^{2} \sin \left(3 x^{3}+2\right) d x$
(A) $-9 \cos \left(3 x^{3}+2\right)+C$
(B) $-\cos \left(3 x^{3}+2\right)+C$
(C) $-\frac{\cos \left(3 x^{3}+2\right)}{9}+C$
(D) $\frac{\cos \left(3 x^{3}+2\right)}{9}+C$
(E) $9 \cos \left(3 x^{3}+2\right)+C$
3. Find $\frac{d y}{d x}$ if $y=\log _{3}\left(2 x^{3}+4 x^{2}\right)$
(A) $\frac{6 x^{2}+8 x}{\left(x^{2}+2 x\right) \ln 3}$
(B) $\frac{3 x+4}{\left(2 x^{3}+4 x^{2}\right) \ln 3}$
(C) $\frac{3 x+4}{\left(x^{2}+2 x\right) \ln 3}$
(D) $\frac{3 x+4}{3 \ln \left(x^{2}+2 x\right)}$
(E) $\frac{6 x^{2}+8 x}{\left(3 x^{3}+2 x^{2}\right) \ln 3}$
4. Verify whether $f(x)=3 x^{2}-12 x+1$ satisfies Rolle's Theorem on the interval $[0,4]$ and find all the numbers c that satisfy $f^{\prime}(c)=0$.
(A) $c=0$
(B) $c=1$
(C) $c=2$
(D) $c=4$
(E) No such value exists
5. $\int \frac{\ln ^{3} x}{x} d x=$
(A) $\frac{\ln ^{3} x}{3}+C$
(B) $\frac{\ln ^{4} x}{4}+C$
(C) $\frac{\ln ^{5} x}{5}+C$
(D) $\ln ^{3} x+C$
(E) $\ln ^{4} x+C$
6. $\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x+1}{4 x^{2}+2 x+5}$
(A) 0
(B) $\frac{4}{5}$
(C) $\frac{3}{11}$
(D) $\frac{5}{4}$
(E) ∞
*7. Which point on the curve $y=5 x^{3}-12 x^{2}-12 x+64$ has a tangent line parallel to $y=3$?
(A) $(0,-2)$
(B) $(2,32)$
(C) $\left(\frac{2}{5}, 12\right)$
(D) $\left(-2, \frac{288}{25}\right)$
(E) $\left(\frac{2}{5}, \frac{256}{25}\right)$
*8. Find the distance traveled in the first four seconds, for a particle whose velocity is given by $v(t)=7 e^{-t^{2}}$, where t represents time.
(A) 0.976
(B) 6.204
(C) 6.359
(D) 12.720
(E) 7.000
*9. Find two non-negative numbers x and y whose sum is 100 and for which $x^{2} y$ is a maximum.
(A) $x=33.333$ and $y=33.333$
(B) $x=50$ and $y=50$
(C) $x=33.333$ and $y=66.667$
(D) $x=100$ and $y=0$
(E) $x=66.667$ and $y=33.333$
