\qquad

Problem

Section Name

1. The radius of a sphere is measured to be 5 cm with an error of $\pm 0.1 \mathrm{~cm}$. Use differentials to approximate the error in volume.
(A) $\pm \pi \mathrm{cm}^{3}$
(B) $\pm 100 \pi \mathrm{~cm}^{3}$
(C) $\pm 10 \pi \mathrm{~cm}^{3}$
(D) $\pm 4 \pi \mathrm{~cm}^{3}$
(E) $\pm 40 \pi \mathrm{~cm}^{3}$
2. If $f(x)=\left\{\begin{array}{cc}2 a x^{2}+b x+6, & x \leq-1 \\ 3 a x^{3}-2 b x^{2}+4 x, & x>-1\end{array}\right.$ and is differentiable for all real values, then $b=$?
(A) -13
(B) 0
(C) 45
(D) 55
(E) 110
3. An equation of the line normal to the graph of $y=\sqrt{3 x^{2}+2 x}$ at $(2,4)$ is
(A) $-4 x+y=20$
(B) $4 x+7 y=20$
(C) $-7 x+4 y=2$
(D) $7 x+4 y=30$
(E) $4 x+7 y=36$
4. If $\cos ^{2} x+\sin ^{2} y=y$, then $\frac{d y}{d x}=$
(A) $\frac{2 \cos x \sin x}{2 \cos y \sin y+1}$
(B) $\frac{\cos x \sin x}{\cos y \sin y}$
(C) $\frac{2 \cos x \sin x}{2 \cos y \sin y-1}$
(D) $\frac{\sin y \cos y}{1-\cos x \sin x}$
(E) $\frac{2 \cos y \sin y}{2 \cos x \sin x-1}$
5. Find the volume of the region formed by the curve $y=x^{2}$, the x-axis and the line $x=3$ when revolved about the y-axis.
(A) $\frac{3}{2} \pi$
(B) $\frac{9}{2} \pi$
(C) $\frac{27}{2} \pi$
(D) $\frac{81}{2} \pi$
(E) $\frac{243}{2} \pi$
*6. An open top cylinder has a volume of $125 \pi \mathrm{in}^{3}$. Find the radius required to minimize the amount of material to make the cylinder.
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
*7. A 50 ft ladder is leaning against a building and being pulled to the ground, so the top is sliding down the building. If the rate the bottom ladder is being puller across the ground is $12 \mathrm{ft} / \mathrm{sec}$, what is the rate the top of the ladder is sliding down the building when the top is 30 ft from the ground?
(A) $12 \mathrm{ft} / \mathrm{sec}$
(B) $9 \mathrm{ft} / \mathrm{sec}$
(C) $20 \mathrm{ft} / \mathrm{sec}$
(D) $9.6 \mathrm{ft} / \mathrm{sec}$
(E) $16 \mathrm{ft} / \mathrm{sec}$
*8. If $f(x)=\left(1+\frac{x}{20}\right)^{5}$ find $f^{\prime \prime}$ (40)
(A) 0.068
(B) 1.350
(C) 5.400
(D) 6.750
(E) 540.000
*9. A particle height at time $t \geq 0$ is given byh $(t)=100 t-16 t^{2}$. What is its maximum height?
(A) 312.500
(B) 156.250
(C) 78.125
(D) 6.250
(E) 3.125
