AP Calculus	Name:	
Multiple Choice Monday #4	Date:	Per:
Problem		Section Name
1 The radius of a sphere is measured to be 5 cm with an er	$r_{\rm cor}$ of ± 0.1 cm. Use differentials to	
approximate the error in volume		
	3 (5) + 40 3	
(A) $\pm \pi \ cm^3$ (B) $\pm 100\pi \ cm^3$ (C) $\pm 10\pi \ cm^3$ (D) $\pm 4\pi \ cm^3$	n^{3} (E) $\pm 40\pi \ cm^{3}$	
2 if $f(x) = (2ax^2 + bx + 6), x \le -1$		
2. If $f(x) = \begin{cases} 3ax^3 - 2hx^2 + 4x & x > -1 \end{cases}$ and is different	Table for all real values, then $b = c$	
(A) = 13 (B) 0 (C) 45 (D) 55 (E) 110		
(A) = 15 (B) 0 (C) 45 (D) 55 (C) 110		
3. An equation of the line normal to the graph of $v = \sqrt{3x^2}$	+2x at (2, 4) is	
(A) $-4x + y = 20$ (B) $4x + 7y = 20$ (C) $-7x + 4y = 2$	(D) $7x \pm 4y = 30$ (E) $4x \pm 7y = 36$	
(A) $f_x + y = 20$ (b) $f_x + 7y = 20$ (c) $7x + 4y = 2$	(D) / x + y = 30 $(D) + x + 7y = 30$	
dy		
4. If $\cos^2 x + \sin^2 y = y$, then $\frac{dy}{dx} =$		
$(a) 2\cos x \sin x \qquad (b) \cos x \sin x \qquad (c) 2\cos x \sin x \qquad (b) \sin y$	$\cos y$ (r) $2\cos y\sin y$	
(A) $\frac{1}{2\cos y \sin y + 1}$ (B) $\frac{1}{\cos y \sin y}$ (C) $\frac{1}{2\cos y \sin y - 1}$ (D) $\frac{1}{1 - \cos y \sin y}$	$\frac{1}{x \sin x}$ (E) $\frac{1}{2 \cos x \sin x - 1}$	

5. Find the volume of the region formed by the curve $y = x^2$, the $x - axis$ and the line $x = 3$ when	
revolved about the $y - axis$.	
$(A) \frac{1}{2} n (B) \frac{1}{2} n (C) \frac{1}{2} n (D) \frac{1}{2} n (E) \frac{1}{2} n$	
*6. An open top cylinder has a volume of $125\pi in^3$. Find the radius required to minimize the amount	
of material to make the cylinder. (A) $2 (P) 2 (C) 4 (D) = (E) 6$	
*7. A 50 ft ladder is leaning against a building and being pulled to the ground, so the top is sliding down	
the building. If the rate the bottom ladder is being puller across the ground is 12 ft/sec, what is the rate	
the top of the ladder is sliding down the building when the top is 30 ft from the ground? (A) 12 ft/sec (B) 9 ft/sec (C) 20 ft/sec (D) 9.6 ft/sec (E) 16 ft/sec	
$(r)^5$	
*8. If $f(x) = \left(1 + \frac{x}{20}\right)$ find $f''(40)$	
(A) 0.068 (B) 1.350 (C) 5.400 (D) 6.750 (E) 540.000	
*9. A particle height at time $t \ge 0$ is given by $h(t) = 100t - 16t^2$. What is its maximum height?	
(A) 312.500 (B) 156.250 (C) 78.125 (D) 6.250 (E) 3.125	