Create two true statements from the problems below:

Problem	QR code	Word
Let f be the function given by $f(x) = 300x - x^3$. On which of the following intervals is the function f increasing?		
0,∞) 300 -3 x²=0	回沒族回	
(C) [0, 10] only	心	
(D) $[0.10\sqrt{3}]$ only	国际的特殊	
(E) $[0, \infty)$		
If $f(x) = 7x - 3 + \ln x$, then $f'(1) =$	923	
(A) 4 (B) 5 (C) 6 (D) 7 (B) 8		
\$\(\omega) = 7 + \tau		
$\int \frac{(2x+1)(x-2)}{(2x+1)(x-2)} \text{ for } x \neq 2$	9	
Let f be the function defined above. For what value of k is f continuous at $x = 2$?	以外	
(A) 0 (B) 1 (C) 2 (D) 3 (6) 5	#5888B	
If $y = x \sin x$, then $\frac{dy}{dx} = \frac{1}{12} \sin x + \chi \cos x$		
(A) $\sin x + \cos x$	直発発を	
$\frac{\partial f}{\partial x} \sin x + x \cos x$		
(C) $\sin x - x \cos x$	が発われ	
(D) $x(\sin x + \cos x)$	回流逐渐	
(E) $x(\sin x - \cos x)$		

	(A) 2 (B) 6 (C) 8 (E) 10 (E) 12 \uparrow (S)4)
国 製 換 国	The function f is defined by $f(x) = \begin{cases} 2 & \text{for } x < 3 \\ x - 1 & \text{for } x \ge 3. \end{cases}$ What is the value of $\int_1^5 f(x) dx$?
	$ (3x^2 - \cos x) \cdot (3x^2 + \sin x) $
国际数据的	(D) $5(3x^2 + \sin x)^4 \cdot (6x + \cos x)$
	(C) $5(3x^2 + \sin x)$
	(B) $5(3x^2 + \sin x)^4$
	(A) $5(x^3 - \cos x)^4$
	If $y = (x^3 - \cos x)^5$, then $y' = 5(\chi^3 - \omega s \chi)^4 (3\chi^2 + s \ln \chi)$
	New Sentence
	(A) 64.9 (B) 68.2 (C) 114.9 (D) 116.6 (E) 118.2
	Using a right Riemann sum with three subintervals and data from the table, what is the approximation of the number of liters of oil that are in the tank at time $t = 15$ hours?
機の数数	A tank contains 30 liters of oil at time $t = 4$ hours. Oil is being pumped into the tank at a rate $R(t)$, where $R(t)$ is measured in liters per hour, and t is measured in hours. Selected values of $R(t)$ are given in the table above.
· · · · · · · · · · · · · · · · · · ·	
	(liters/hour) 6.5 6.2 5.9 5.6 (3) (6.2) + (5) (5.9) + 3(56)
	t (hours) 4 7 12 15

2 (2+4),2

The graph of the function f is shown above. Which of the following statements is false?

- (A) $\lim_{x \to 2} f(x)$ exists. = 2
- (B) $\lim_{x \to 3} f(x)$ exists. = 5
- $\lim_{x \to 4} f(x) \text{ exists.} \quad \lim_{x \to 4} f(x) = 2$
- 2 /m fa) = 4
- (D) $\lim_{x \to 5} f(x)$ exists. ≤ 0
- (E) The function f is continuous at x = 3.

The line y = 5 is a horizontal asymptote to the graph of which of the following functions?

(A)
$$y = \frac{\sin(5x)}{x} > \infty$$

$$(B) \quad y = 5x$$

(C)
$$y = \frac{1}{x - 5}$$

ر ا ا

S- = P

(D)
$$y = \frac{5x}{1-x}$$

interval 0 < x < 2? Let g be a function with first derivative given by $g'(x) = \int_0^x e^{-t^2} dt$. Which of the following must be true on the et >0 area wale and

 \otimes g is increasing, and the graph of g is concave up.

(B) g is increasing, and the graph of g is concave down.

(C) g is decreasing, and the graph of g is concave up.

(D) g is decreasing, and the graph of g is concave down.

(E) g is decreasing, and the graph of g has a point of inflection on 0 < x < 2.

S

0, (X) = 0 - 4, VA