Let R be the region in the first quadrant bounded by the x - axis and the graphs of $y=\ln x$ and $y=5-x$ as shown in the figure to the right.

Find the point of intersection.

Find the area of R .

1. \qquad
2. \qquad
Region R is the base of a solid. For the solid, each cross section perpendicular to the x axis is a square. What is the volume of the solid.

Region R is the base of a solid. For the solid, each cross section perpendicular to the y-axis is a semi-circle. What is the volume of the solid.
3. \qquad
4. \qquad

Sum: \qquad

The functions f and g are given by $f(x)=\sqrt{x}$ and $g(x)=$ $6-x$. Let R be the region bounded by the $x-$ axis and the graphs of f and g as shown.

Find the area of the region R.

Find the volume of the solid rotated around the $y=$ axis.

1. \qquad
2.
3.

Find the volume of the solid rotated around the line $x=6$.
3. \qquad
The region R is the base of a solid. For each y, where $0 \leq y \leq 2$, the cross section taken perpendicular to the y-axis is a rectangle whose base lies in R and whose height is $2 y$. Find the volume of the solid.
4. \qquad
\qquad

In the figure, R is the shaded region in the first quadrant bounded by the graph of $y=4 \ln (3-x)$, the horizontal line $y=6$ and the vertical line $x=2$.

Find the area of R.

1. \qquad
Find the volume of the solid when R is revolved about the horizontal line $y=8$.
2. \qquad
Find the volume of the solid when R is revolved about the x-axis.
3. \qquad
The region R is the base of a solid. For this solid, each cross section is perpendicular to the x-axis is a square. Find the volume of this solid.
4. \qquad

Sum: \qquad

