Name: $\qquad$
$\qquad$ Per:
1)

For $0 \leq t \leq 6$, a particle is moving along the $x$-axis. The particle's position, $x(t)$, is not explicitly given.

The velocity of the particle is given by $v(t)=2 \sin \left(e^{t / 4}\right)+1$. The acceleration of the particle is given by $a(t)=\frac{1}{2} e^{t / 4} \cos \left(e^{t / 4}\right)$ and $x(0)=2$.
(a) Is the speed of the particle increasing or decreasing at time $t=5.5$ ? Give a reason for your answer.
(b) Find the average velocity of the particle for the time period $0 \leq t \leq 6$.
(c) Find the total distance traveled by the particle from time $t=0$ to $t=6$.
(d) For $0 \leq t \leq 6$, the particle changes direction exactly once. Find the position of the particle at that time.
2)

The function $g$ is defined for $x>0$ with $g(1)=2, g^{\prime}(x)=\sin \left(x+\frac{1}{x}\right)$, and $g^{\prime \prime}(x)=\left(1-\frac{1}{x^{2}}\right) \cos \left(x+\frac{1}{x}\right)$.
(a) Find all values of $x$ in the interval $0.12 \leq x \leq 1$ at which the graph of $g$ has a horizontal tangent line.
(b) On what subintervals of $(0.12,1)$, if any, is the graph of $g$ concave down? Justify your answer.
(c) Write an equation for the line tangent to the graph of $g$ at $x=0.3$.
(d) Does the line tangent to the graph of $g$ at $x=0.3$ lie above or below the graph of $g$ for $0.3<x<1$ ? Why?
3) If $f(x)=x^{-3}+3 \sqrt{x}+5 \pi-e^{2}$, then $f^{\prime}(x)=$
(A) $\frac{3}{2 \sqrt{x}}-3 x^{4}$
(B) $\frac{3}{2} x^{\frac{1}{2}}-3 x^{-4}$
(C) $3 x^{-4}+\frac{3}{2 \sqrt{x}}$
(D) $-\frac{3}{x^{4}}+\frac{3}{2 \sqrt{x}}$
(E) $3 x^{2}+\frac{3}{2 \sqrt{x}}$
4) Approximate the area under the curve $y=x^{2}+2$ from $x=1$ to $x=2$ using four inscribed trapezoids.
(A) 4.333
(B) 3.969
(C) 4.719
(D) 4.344
(E) 4.328
5) When is the particle whose path is described by $x(t)=2 t^{3}-\frac{21}{2} t^{2}+9 t-16$, from $t>0$, slowing down?
(A) $0<t<3$
(B) $\frac{7}{4}<t<3$
(C) $\frac{1}{2}<t<\frac{7}{4}$
(D) $\frac{1}{2}<t<3$

