AP Calculus
Technology Tuesday \#1 Calculator Solutions

Name: \qquad
Date: \qquad Per: \qquad

1) Make sure to use the NUMBER e and not the letter

a. . The | can be found using "ctrl ="

The speed is increasing at $t=5.5$ because the veolcity and acceleration have the same sign.

41.11 .2	*Unsaved ∇	们
$v(5.5)$		-0.45337
$a(5.5)$		-1.35851
I		

The speed is increasing at $t=5.5$ because the veolcity and acceleration have the same sign.
b.

$$
\begin{aligned}
& \text { average value of a function (replace } f \text { with } \\
& \text { velocity) } \\
& \frac{1}{b-\mathbf{a}} \int_{\mathbf{a}}^{b} f(x) \mathrm{d} x
\end{aligned}
$$

c. Use the absolute value in the templates key

TOTAL distance ignores the sign -> absolute value|
d.

The first line shows the difference between using a restricted domain (line 1) and a non-restricted domain (line 2). The graph shows $\mathrm{v}(\mathrm{t})$ changes from positive to negative velocity (i.e. traveling right to left). The last line represents the position

$$
x(b)=\underbrace{x(2)}_{\text {start position }}+\underbrace{\int_{0}^{b} v(t) d t}_{\text {accumulated position }}
$$

2)

a.

b.

Menu->zoom->window settings x goes from 0 to 1

concave down on $(0.12945,0.22273)$ since $\mathrm{g}^{\prime \prime}(\mathrm{x})<0$
c. Tan line $y=f^{\prime}(a)(x-a)+f(a)$

line 2: $g(0.3)=$ starting point $g(1)+$ accumulated distance from 1 to 0.3 (going backwards will be negative)

Tan line $y=-.472(x-0.3)+1.546$
d.

> the graph above is the second derivative from $(0.3,1)$. The graph shows $\mathrm{g}^{\prime \prime}(\mathrm{x})>0$ and thus concave up. By definition the tan line lies BELOW the graph
3)

4)

5)

Menu -> zoom -> window settings x from 0 to 4 since largest answer choice is 3)
Menu -> analyze graph -> zero click on the graph and an upper and lower bound to find the zeros
Slowing down is when the signs are DIFFERENT.

Opposite signs on $0<t<\frac{1}{2}$ and $\frac{7}{4}<t<3$

