AP Calculus

Technology Tuesday #2 Calculator Solutions

a. We are finding S(60)=s(0)+integral below, we store the answers as "a" for use in

b. UNITS "mm/day"

Name: _____

Date: _____

c. UNITS "mm^3/day"

1.2 1.3 1.4	▶ *Unsaved 🗢	1	×
Volume = (πr^2))*height	[^
radius=10			
height=S(t)			
V=100πS(t)			
V'=100πS'(t)		ľ	
100 · π · s 1(7)		602.218	^
602.21811			

Per:

d.

$m I(t) := \frac{d}{dt} (m(t))$	Done
d(t) := m 1 (t) - s 1 (t)	Done
<i>d</i> (0)	-0.675
a(60) ₹	69.3773

d is the difference in the RATES, D is continuous, thus the IVT theorem will apply. D(0)<0 means that M'(t)<S'(t) and D(60)>0 means M'(t)>S'(t). So at some point D(c)=0, at which time M' and S' had to be the same.

2.2 2.3 2.4 *Unsaved -1000+*a*-*b* 1434.41 \square Water in tank after 12 hours =water at start+water pumped in over 12 hours-water leaked out over 12 hours NEAREST CUBIC FOOT = 1434 1 V'(t) will represent the rate of volume change V'(t)=P(t)-R(t) (since P and R are already rates) V'(8)=P(8) - R(8) store for next part

d.

c.

3) Change the interval to [0,2]

5) Graph then use MENU->ANALYZE->ZERO click to the left of the zero for a lower bound and click right of the zero for the upper bound, two zeros means you have to do this twice.

 4.1 5.1 ► *Unsaved - 4.1 5.1 ► *Unsaved - 	4.1 5.1 5.2 ▶ *Unsaved -	K 🛛 🗙
$\int_{1}^{6.67} \int_{1}^{\gamma} \mathbf{f1}(x) = 4 \cdot x^2 - x^4$	$\int_{-2}^{2} fI(x) \mathrm{d}x$	128 15
-10 (-2,0) 1 (2,0) 10	▶	
-6.67		