AP Calculus
Technology Tuesday \#2 Calculator Solutions
1)

$s 1$ is a rate $\mathrm{mmm} /$ day
m is height mm

Name: \qquad
Date: \qquad Per: \qquad
c. UNITS "mm^3/day"

1.2 1.3 1.4 	如区
$\begin{aligned} & \text { Volume }=\left(\pi r^{\wedge} 2\right) \text { *height } \\ & \text { radius }=10 \\ & \text { height }=S(t) \\ & V=100 \pi S(t) \\ & V^{\prime}=100 \pi S^{\prime}(t) \end{aligned}$	$\stackrel{\wedge}{\wedge}$
$100 \cdot \pi \cdot s 1(7)$	602.218
602.21811	

d.

d is the difference in the RATES, D is continuous, thus the IVT theorem will apply. $\mathrm{D}(0)<0$ means that $\mathrm{M}^{\prime}(\mathrm{t})<\mathrm{S}^{\prime}(\mathrm{t})$ and $D(60)>0$ means $M^{\prime}(t)>S^{\prime}(t)$. So at some point $D(c)=0$, at which time M^{\prime} and S^{\prime} had to be the same.
2)

Cuse the number e not the letter
a. $\int_{0}^{12} P(t) d t=$ store for use in part c

three subintervals (widths) from $0-4,4-8$, \&-12 with midpoints $2,6,10$ (use these numbers for heights)
these are VOLUMES so the units are $\mathrm{ft}^{\wedge} 3$
b. Store for use in part c

volume of water $\rightarrow \int$ rate of volume din
c.

Water in tank after 12 hours = water at start+water pumped in over 12 hours-water leaked out over 12 hours
NEAREST CUBIC FOOT $=\mid 1434$
d.

Want how fast the HEIGHT is changing, h^{\prime}
$V=\pi r^{\wedge} 2 h=144 h$
$V^{\prime}=144 h^{\prime}$
$V^{\prime}(8)=144 * h^{\prime}(8)$
for calc purposes we will use h for $\mathrm{h}^{\prime}(8)$

3) Change the interval to $[0,2$]

Rolle's Theorem (aka mean value theorem
$f^{\prime}(c)=\frac{\mathbf{f}(b)-\mathbf{f}(a)}{b-a}$

$f(x):=2 \cdot x^{4}-16 \cdot x$	Done 回
$f 1(x):=\frac{d}{d x}(f(x))$	Done
solve $\left(f 1(c)=\frac{f(2)-f(0)}{4-0}, c\right)$	$c=2^{\frac{1}{3}}$

4)

5) Graph then use MENU->ANALYZE->ZERO click to the left of the zero for a lower bound and click right of the zero for the upper bound, two zeros means you have to do this twice.

