\qquad
\qquad
An evil former student who failed calculus (but passed AP Chemistry) has create a virus and infected all the teachers at Southwest High School. Initially 64 teachers were infected at 7 am $(t=0)$. The Zombie virus is passed through being poked by a special teacher appreciation day pen. The teachers are infecting students at a rate of 3 students per hour. Unfortunately, the student only got a 3 on the AP exam so his virus isn't foolproof, the Zombies are dying off at the rate $r(t)$ shown in the graph below. Time, t, is measured in hours from the time the teachers are infected. The zombies get off work at 3 pm .

rate of zombies created 64.3 zombres/nr

64 teachers $\times \frac{3 \text { students }}{\text { hour }} \times 2$ hours $=384$ zombies made $=192$
(a) How many zombies were made in the first 2 hours? How many zombies are there after 2 hours?

$$
\left.\underset{\text { Start }}{64}+\underset{\text { accumulate }}{384}=448 \text { zombies total } \quad * \int_{0}^{2} 192 a t=192 t\right]_{0}^{2}
$$

(b) How many zombies died in the first 4 hours?

$$
\int_{0}^{4} r(t) d t=350+250+(1)(200)=800 \text { 20mbres died }
$$

(c) How many zombies are "alive" after 4 hours?

$$
\begin{aligned}
& \text { (c) How many zombies are "alive" after } 4 \text { hours? } \\
& \text { Zombies created }=\left.\int_{0}^{4} 192 d t=192 t\right]_{0}^{4}=192(4-0)=768 \\
& \text { Zombies initially }= 64 \\
& \text { Zombies dree }= \int_{0}^{4} r(t) d t=800 \\
& 768+64-800=32 \text { zombies }
\end{aligned}
$$

(d) Are all the zombies dead at the end of the day? If no, how many are left to come back tomorrow?

$$
\begin{aligned}
& \left.\int_{0}^{8} 192 d t=192 t\right]_{0}^{8}=192(8-0)=1536 \\
& \int_{0}^{8} r(t) d t=350+250+400+175+200+125=1500
\end{aligned}
$$

total zombies

$$
1536+64=1600
$$

total dead zombies

$$
=1500
$$

NO, There are $1600-1500=100$ zermbies left.
(e) Is the number of zombies "alive" increasing or decreasing between $t=4$ and $t=5$?

$$
\begin{gathered}
\text { Zombies alive }=\begin{array}{c}
\text { Zombies } \\
\text { created }
\end{array}-\begin{array}{c}
\text { Zombies } \\
\text { dead }
\end{array}
\end{gathered} \begin{aligned}
& >0 \\
\angle 0 & \text { inc } \\
& \text { dec }
\end{aligned}
$$

The number of zombies alive is decreasing
(f) During what time intervals are the number of zombies at a relative maximum? Justify using calculus
derivative goes from + to -

$$
\begin{gathered}
192-r(t)>0 \\
192>r(t) \\
192-r(t)<0 \\
192<r(t)
\end{gathered}
$$

max between $t=1,2$ and $t=6,7$
(g) Find the value and Explain the meaning of $\frac{1}{8} \int_{0}^{8} r(t) d t$

$$
\begin{gathered}
\\
\pi \\
\text { rage }
\end{gathered}
$$

average
average rate of zombres/hr dying over 8 hoars.

